OPERATOR’S MANUAL

RGCOMBO812
PORTABLE ROLL GROOVER

WARNING
Clothing/gloves can be caught in moving parts. Fingers can be crushed.
- Keep hands away from grooving rolls.
- Use footswitch.
- Read Operator’s Manual.
Description and Specifications

Description

The Reed Model RGCOMBO812 Roll Groover is designed to form standard rolled grooves in steel, stainless steel and aluminum pipe, from 8” to 12”, up to .188 wall thickness pipe. The groove is formed by the groove roll which is fed into the pipe wall. The pipe is supported on the inside by a drive roll, which is relieved to permit pipe wall deformation. The formed grooves comply with the specifications required for mechanical coupling systems. The only adjustment required is for the depth of the groove.

Designed for portability, the RGCOMBO812 Roll Groover is an economical solution to the job-site grooving requirements in mechanical piping system installations. The RGCOMBO812 is not intended for production work in the fab shop.

The RGCOMBO812 Roll Groover is designed for use with the Reed #05301 5301PD Power Drive.

Specifications

- Capacity: 8” - 12” (203 - 305 mm) to .188 wall
- Depth Adjustment: Adjusting Screw and Included Depth Gauge
- Actuation: Feed Screw (included ratchet wrench) REED 5301PD Power Drive Mounting
- Weight: 32 lbs.

Standard Equipment

- Groove Roll: 8” - 12” (203 - 305 mm)
- Drive Roll (Drive Shaft): 8” - 12” (203 - 305 mm)
- Feed Handle: Included Ratchet Wrench
- Support Means: Included Support Rods

Recommended Accessories

- Reed Model JLV Low Pipe Jack (06355) with JTA Ball Transfer Head (06351), or JL2R Roller Head Jack (06356).
- Reed 5301PD Power Drive (38 rpm Models)

Important - Before Operating

Before operating the RGCOMBO812 Roll Groover, read and follow all safety information and instructions in the operator’s manual.

Safety Information

WARNING!

Serious injury can occur if all safety information and operating instructions are not followed. These injuries could include:

- Loss of fingers, hands, arms or other body parts if clothing or gloves get caught in moving parts;
- Electrical shock or burns from contact with wires, motor or other power drive parts;
- Impact injuries, including broken bones if machine tips over or workpiece falls.
- Eye injuries, including being blinded by thrown workpiece or workpiece chips.

General Safety

Read and follow the safety information and instructions in the operator’s manual.

Know the location and functions of all controls before using the machine.

Footswitch Safety

The footswitch of the power drive is for your safety. It lets you shut off the motor by removing your foot. If clothing should become caught in the machine, it could continue to wind up, pulling you into the machine. Because the machine has high torque, the clothing itself can bind around your arm or other body parts with enough force to crush or break bones.
Power Drive Safety

Follow all of the power drive manufacturer’s electrical safety information and operating instructions included with the power drive.

WARNING!

Warning: Clothing/gloves can be caught in moving parts. Fingers, hands, arms or other body parts can be crushed or broken.

- Keep fingers away from grooving rolls.
- Use footswitch.
- Do not wear gloves.
- Keep sleeves and jacket buttoned.
- Do not reach across machine because clothing can be drawn into moving parts.
- Operate machine from switch side only.
- Do not disconnect or block footswitch.
- Keep footswitch in working order.
- Make sure switch is in the “off” position before plugging in power cord.
- Make sure you can quickly remove your foot from the footswitch.

Electrical Safety

Follow all of the power drive manufacturer’s electrical safety information and operating instructions included with the power drive.

Work Area Safety

1. Keep children and visitors out of work area. If visitors must be in area, keep them far away from the machine and extension cords.
2. Keep work area clean, uncluttered and well lit.

Roll Groover Safety

1. Keep hands away from grooving rolls. Fingers could get caught between groove roll and drive shaft.
2. Set up Roll Groover on a flat, level surface. Be sure the machine, stand and Groover are stable and will not tip over.
3. Be sure Groover is properly secured to the power drive. Carefully follow set up instructions.
4. Use only 38 RPM model Power Drives to drive RGCOMBO812.
5. Do not use the RGCOMBO812 Roll Groover for any other purpose than roll grooving pipe and tubing.
6. Do not use excessive force in turning feed screw. Follow operating instructions.
7. Properly support pipe with pipe support.
8. Use recommended accessories. Use of other accessories may increase the risk of injury. Refer to the “Recommended Accessories” section on page 2.

Personal Safety

1. Wear snug-fitting clothes, safety shoes, hard hat and safety glasses. Cover up or tie up long hair. Do not wear loose clothing, gloves, unbuttoned jackets, loose sleeve cuffs, neckties, rings, watches or other jewelry.
2. Wear hearing protectors, ear plugs or muffs if you use the machine daily or in a very noisy area.
3. Operate the power drive and roll groover from the side with the power drive’s “REV/OFF/FOR” switch.
5. Do not operate machine when you are tired.

Caution: Keep hands clear of the Power Drive Hand Wheel/Chuck and Roll Groove Handle area while the tool is in operation.
Machine Maintenance

1. Inspect groove roll and drive shaft. Replace worn rolls.
2. Lubricate with multi-purpose grease through the three grease fittings (see Figure 1).
4. Follow all maintenance instructions provided with the Power Drive.

Pipe Preparation

1. Pipe ends must be cut square. Do not use cutting torch.
 Note: When adjusting roll groover depth, the trial groove pipe should not have a large burr protruding inward. Use a suitable tool to deburr trial groove pipe. After groove depth has been set, deburring of pipe is not required.
2. Pipe out-of-roundness must not exceed the total O.D. tolerance given in groove specifications, listed in Table 1.
 Note: Determine out-of-roundness by measuring maximum and minimum O.D. at 90° apart.
3. All internal or external weld beads, flash or seams must be ground flush at least 2 inches back from pipe end.
 Note: Do not cut or grind flats on gasket seat area.

Powered Grooving Instructions

Assembling the RGCOMBO812 Roll Groover

1. Screw the two Support Rods into the sides of the main body of the Roll Groover (Figure 1). Tighten the support rods securely with a pipe wrench.
2. The included Ratchet Wrench may be inserted into the Feed Screw after set-up.

Installing the Power Drive

1. Remove carriage or other attachments from the power drive.
2. Fully open front chuck of power drive.
3. Set the RGCOMBO812 on the Power Drive with the RGCOMBO812 Support Rods resting on the Power Drive carriage rails. Steady the RGCOMBO812 with one hand.
4. With the other hand rotate the RGCOMBO812 drive shaft to align the flats with the jaws on the Power Drive chuck.
5. Tighten Power Drive chuck on the RGCOMBO812 drive shaft.

Pipe Set-Up

1. Pipe longer than the specified maximum lengths listed in the above chart must be supported with a pipe jack. The pipe jack should be located 3/4 of the pipe length from the roll groover. Long lengths may require two jacks.
2. Raise the RGCOMBO812 Groove Roll by retracting the Feed Screw. Install the pipe on the Drive Shaft and pipe jack.
3. Square the pipe and pipe jack to the roll groover making sure the pipe is flush against the Roll Groover Cover Plate.
4. Level the pipe by adjusting the pipe jack height. Pipe axis should be level with machine axis (Figure 2, page 8).
5. Square up the pipe tool.

Pipe Length

The chart below lists the minimum length of pipe to be grooved and the maximum length to be grooved without a pipe jack.

<table>
<thead>
<tr>
<th>Nominal Pipe Size</th>
<th>Minimum Length</th>
<th>Maximum Length without pipe jack</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>18</td>
</tr>
</tbody>
</table>
Figure 1 - RGCOMBO812 Roll Groover

- Adjusting Screw
- Feed Screw
- Crank Shaft
- Grease Fittings
- Groove Roll
- Drive Shaft
- Support Rod
- Cover Plate
- Grease Fitting
Table 1 - Standard Roll Groove Specifications

Note: All dimensions are in inches.

<table>
<thead>
<tr>
<th>NOM. PIPE SIZE</th>
<th>PIPE DIAMETER O.D. TOL.</th>
<th>T MIN. WALL THK.</th>
<th>A GASKET SEAT ± .030</th>
<th>B GROOVE WIDTH ± .030</th>
<th>C GROOVE DIAMETER O.D. TOL.</th>
<th>D NORMAL GROOVE DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8.625 +.063 -.031</td>
<td>.109</td>
<td>.750</td>
<td>.469</td>
<td>8.441 +.000 -.025</td>
<td>.092</td>
</tr>
<tr>
<td>10</td>
<td>10.750 +.063 -.031</td>
<td>.134</td>
<td>.750</td>
<td>.469</td>
<td>10.562 +.000 -.027</td>
<td>.094</td>
</tr>
<tr>
<td>12</td>
<td>12.750 +.063 -.031</td>
<td>.156</td>
<td>.750</td>
<td>.469</td>
<td>12.531 +.000 -.030</td>
<td>.109</td>
</tr>
</tbody>
</table>

Table 2 - Feed Rates

<table>
<thead>
<tr>
<th>Material</th>
<th>Wall Thickness inches/(mm)</th>
<th>Turns of Feed Screw to Advance the Feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel and Stainless Steel</td>
<td>.217 to .280 (5.51 to 7.1)</td>
<td>1/5 turn</td>
</tr>
<tr>
<td></td>
<td>.135 to .216 (3.43 to 5.49)</td>
<td>1/4 turn</td>
</tr>
<tr>
<td></td>
<td>.120 to .134 (3.05 to 3.40)</td>
<td>1/3 turn</td>
</tr>
<tr>
<td></td>
<td>.065 to .119 (1.65 to 3.02)</td>
<td>1/2 turn</td>
</tr>
<tr>
<td>Aluminum and Copper</td>
<td>.135 to .216 (3.43 to 5.49)</td>
<td>1/3 turn</td>
</tr>
<tr>
<td></td>
<td>.120 to .134 (3.05 to 3.40)</td>
<td>1/2 turn</td>
</tr>
<tr>
<td></td>
<td>.065 to .119 (1.65 to 3.02)</td>
<td>2/3 turn</td>
</tr>
</tbody>
</table>
Adjusting Groove Depth

Note: To insure the proper groove diameter, a trial groove should be performed.

Note: The Adjusting Screw must be set for each diameter of pipe.

1. Loosen Adjusting Screw (counterclockwise) enough to permit advancing of the Groove Roll down to the pipe.

2. Advance Feed Screw (clockwise) until Groove Roll is snug against top of pipe. Be sure Groove Roll contacts pipe and Adjusting Screw head does not bottom out.

Note: Trial groove pipe should be deburred for best results. Burr on inside of pipe will raise pipe away from drive shaft, causing inaccurate set-up adjustment. After proper groove depth has been verified by trial groove, deburring of following pipes is not required. See Step 1 of “Pipe Preparation”.

3. Using the Depth Gauge labeled with the pipe size being grooved, place Depth Gauge under head of Adjusting Screw using the flat gage slot.

4. Advance Adjusting Screw downward until underside of head touches Depth Gauge.

5. Remove Depth Gauge.

Note: It may be necessary to readjust Adjusting Screw after trial groove is made. Each 1/4 turn of Adjusting Screw will produce a .02” change in diameter of rolled groove. Tightening Adjusting Screw will increase groove diameter. Loosening Adjusting Screw will decrease groove diameter.

Forming the Groove

1. Place the power drive switch in the reverse (REV) position for clockwise rotation of the drive shaft and pipe.

2. Step on power drive footswitch and apply light pressure on pipe by advancing Feed Screw with the Straight Ratchet Wrench.

Warning: If pipe tends to “walk off” the tool.
 a. Verify the pipe sits level, if not level then correct.
 b. Verify the pipe rotates in the direction shown by the sticker on the tool.
 c. Offset the far end of the pipe toward the operator’s side (the side with the power drive REV/OFF/FOR Switch). A pipe offset of 1 inch per 10 ft. should work. (See Figure 2).

Caution: Keep hands clear of the Power Drive Hand Wheel/Chuck and Roll Groove Handle area while the tool is in operation.

3. With pipe tracking properly and end of pipe against cover plate, step on footswitch and begin advancing Feed Screw with Ratchet Wrench, allowing one complete rotation of pipe between strokes of Ratchet Wrench.

Caution: Do not over-feed. Allow one complete rotation of pipe between advances. See Table 2 for details.

4. Continue feeding until Adjusting Screw makes contact with the top surface of the Roll Groover. Allow pipe to make two complete rotations in bottomed position to insure uniform groove depth.

Warning: Do not tighten Feed Screw after Adjusting Screw bottoms out. Damage to the Adjusting Screw may result.

5. Release footswitch to stop machine, and begin retracting Feed Screw by turning Ratchet Wrench counterclockwise. Retract Feed Screw enough to remove pipe from machine.

6. Measure groove diameter at two places 90° apart. Both measurements should be within the listed tolerance of the dimension shown in Table 1.

7. To increase groove diameter tighten Adjusting Screw. To decrease groove diameter loosen Adjusting Screw. Each 1/4 turn of Adjusting Screw will change groove diameter by approximately .02”.

Note: Once groove depth has been set, following grooves will be same depth.

8. Periodically check groove depth with a mechanical coupling. The coupling should fully seat in the groove without binding or excessive play.

Roll Grooving Tips

1. If pipe tends to “walk off” drive shaft, increase lateral offset of pipe (see Figure 2 - Pipe Set-Up).

2. If Cover Plate shaves end of pipe, decrease lateral offset of pipe.

3. If pipe end flare is excessive, lower pipe end to level with roll groover.

4. If pipe wobbles and/or “walks off” Drive Shaft, raise pipe end to level with roll groover.

5. Short lengths of pipe (under three feet) may require slight hand pressure to maintain the lateral offset.
Figure 2 - Pipe Set-Up

TOP VIEW

Machine Axis

Pipe Axis

Operator's Side

Lateral Offset

SIDE VIEW

Machine Axis

Pipe Axis

Parallel
Manual Grooving Instructions

1. Situation
 a. Pipe secured to vise: Securely mount pipe vise (chain type) on a secure stand or workbench. Allow the pipe to overhang the vise 5 to 12" so the tool will rotate freely and not contact the vise. (See Figure 3)
 b. Pipe installed (grooving in place): Verify the pipe hangers can accommodate the weight of the RGCOMBO812 plus the manual effort required to operate the tool.

2. Mounting the Tool
 a. Retract the upper roller by turning the Feed Screw counterclockwise.
 b. Insert the Drive Shaft into the pipe with the Groove Roll on the outside.
 c. Draw the rolls closer together by turning the Feed Screw clockwise until the Driveshaft and Groove Roll contact the pipe lightly.
 d. Place Support Bar into Body of the tool. Place the Support Bar on the leading side of the tool. When placed correctly, the “Pipe Direction” arrow will point away from the support bar.

3. Set Groove Depth
 Note: To insure the proper groove diameter, a trial groove should be performed.
 Note: The Adjusting Screw must be set for each diameter of pipe.
 a. Loosen Adjusting Screw (counterclockwise) enough to permit advancing of Groove Roll down to pipe.
 b. Advance Feed Screw (clockwise) until Groove Roll is snug against top of pipe. Be sure Groove Roll contacts pipe and Adjusting Screw head does not bottom out.
 Note: Trial groove pipe should be deburred for best results. Burr on inside of pipe will raise pipe away from drive shaft, causing inaccurate set-up adjustment. After proper groove depth has been verified by trial groove, deburring of following pipes is not required. See Step 1 of “Pipe Preparation”.
 c. Using the Depth Gauge labeled with the pipe size being grooved, place Depth Gauge under head of Adjusting Screw using the flat gage slot.
 d. Advance Adjusting Screw downward until underside of head touches Depth Gauge.
 e. Remove Depth Gauge.

 Note: It may be necessary to readjust Adjusting Screw after trial groove is made. Each 1/4 turn of Adjusting Screw will produce a .02" change in diameter of rolled groove. Tightening Adjusting Screw will increase groove diameter. Loosening Adjusting Screw will decrease groove diameter.

4. Forming the Groove
 a. Advance the Feed Screw the amount specified in Table 1. Place one hand on the support bar to keep the tool from twisting when advancing the Feed Screw.
 b. Using the Socket Extention and Bent Handle Ratchet, turn the Crankshaft so the pipe feeds into the tool as indicated by the arrow.
 c. Make one complete revolution of the tool around the pipe before advancing the Feed Screw again.
 d. Apply pressure on support bar if needed to keep tool tracking.
 e. Continue grooving until you reach the desired depth. (The Adjusting Screw can limit Feed Screw advance see the section on Adjusting Groove Depth for details).

5. Dismount the tool, retract the Feed Screw fully, lift and remove the tool from the pipe.

Figure 3. Pipe Set-up
Parts Breakdown
Parts List

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Description</th>
<th>Item Code</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main Body</td>
<td>99205</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Gear Housing</td>
<td>99201</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Cover Plate</td>
<td>99203</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1/4 - 20 x 1/2 Flat Head Socket</td>
<td>30216</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Driveshaft</td>
<td>99222</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Key 1/4 x 1/4 x 3/4</td>
<td>39208</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Gear, Manual Drive Shaft</td>
<td>99208</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Retaining Ring</td>
<td>30207</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Bottom Thrust Bearing</td>
<td>40432</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Retaining Ring</td>
<td>30211</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>10 - 24 x 5/8 Socket Head Cap Screw</td>
<td>39200</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>Crank Shaft</td>
<td>98587</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Bronze Bushing</td>
<td>40461</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>Gear, Crankshaft</td>
<td>99210</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Coil Spring Pin</td>
<td>38587</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1/4 - 20 x 5/8 Socket Head Cap Screw</td>
<td>30105</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>Slide Block Retainer</td>
<td>99218</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>Retaining Ring</td>
<td>30209</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Compression Spring</td>
<td>30212</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Adjusting Screw</td>
<td>98509</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>Feed Screw</td>
<td>98504</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Thrust Washer</td>
<td>93044</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>Slide Block</td>
<td>99220</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Groove Roll Shaft</td>
<td>98528</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>Top Roll Bearing</td>
<td>40431</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>Thrust Washer</td>
<td>98590</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>Groove Roll</td>
<td>99221</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>Socket Set Screw</td>
<td>30224</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>Bottom Roller Bearing</td>
<td>40433</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>Roller Bearing - Inner Ring</td>
<td>40430</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>Dowel Pin</td>
<td>38847</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>Threaded Bushing</td>
<td>99215</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>Support Bar</td>
<td>98511</td>
<td>2</td>
</tr>
<tr>
<td>34</td>
<td>Grease Fitting</td>
<td>40338</td>
<td>3</td>
</tr>
<tr>
<td>35</td>
<td>Drive Pin</td>
<td>30133</td>
<td>3</td>
</tr>
<tr>
<td>36</td>
<td>Depth Gauge</td>
<td>99223</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>Split Ring</td>
<td>40204</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>Brass Safety Chain</td>
<td>40434</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>Metalphoto Tag</td>
<td>99204</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>Pipe Direction Sticker</td>
<td>59209</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>Roll Groove Sticker</td>
<td>50516</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>Ratchet</td>
<td>40208</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>Ratchet - Bent Handle</td>
<td>98593</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>Socket Extension</td>
<td>48594</td>
<td>1</td>
</tr>
</tbody>
</table>
CAUTION: Safety reminders for a professional approach to tool selection and use.

- Proper maintenance of tools is critical to personal safety; worn tools should be repaired or replaced as required.
- Select the correct tool and tool size for the job. Never modify a tool to exceed its intended capacity.
- We recommend the Hand Tools Institute booklets for additional safety tips. Booklets are available from Reed or the Hand Tools Institute.